

Inspection of HVAC systems through continuous monitoring and benchmarking

www.iservcmb.info

REHVA Workshop – iSERV Overview

Dr Ian Knight Timisoara April 2012

The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained here.

Aim of iSERV

- ➔ By 2019/2021 all new EU buildings will have to be near zero-carbon, yet we have no comprehensive 'inuse' energy benchmarks for HVAC systems
- →iSERV proposes continuous monitoring and benchmarking of HVAC systems as a means of achieving robust in-use energy efficiency
- ➔An alternative route to compliance with EPBD requirements for the Inspection of HVAC systems.
- Providing a solid basis for an on-going benchmarking system for HVAC systems, compatible with BIM

iSERV Partners

Welsh School of Architecture, Cardiff University Building energy use experts	CARDIFF UNIVERSITY PRIFYSGOL CAERDYD	K2n Ltd Database experts	K ²
MacWhirter Ltd Installation, Maintenance and Energy Inspections	MacWhirter	National and Kapodistrian University of Athens Indoor Air Quality experts	×
University of Porto HVAC and Engineering experts	U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO	Politecnico di Torino HVAC and Engineering experts	
Université de Liège HVAC and Modelling experts	Université de Liège	Univerza v Ljubljani HVAC and Engineering experts	
University of Pecs HVAC and Engineering experts	13 CONTRACTOR	Austrian Energy Agency Dissemination and Legislation	e "
REHVA HVAC Professional Body	REHVA BE	CIBSE HVAC Professional Body	

Aim of workshop

To involve as many stakeholders in the iSERV project as possible in examining and overcoming the barriers to implementing such an approach:

- Building owner/operators
- HVAC System owner/operators
- HVAC Manufacturers
- Building and HVAC System designers
- HVAC Inspectors
- Legislators
- Monitoring system providers

'Help set the standard'

- → Legislation is increasingly providing standards that HVAC systems have to meet, yet the practical implications and achievement of those standards is not yet well understood.
- → iSERV will allow all stakeholders involved with HVAC systems to participate in setting their practical energy use standards.
- → iSERV allows novel energy efficient approaches to be rapidly demonstrated and included in the benchmarks
- → Standards based on reality not prejudgement
- Opportunity for all stakeholders to achieve greater value from HVAC systems

What does iSERV require?

- → Data on floor area and activities served
- → Hours of use of areas by activities
- Data on HVAC system components, sensors and utility meters
- Connection of all of these together to understand the relationship between activities, HVAC components and utility use
- →Ongoing sub-hourly data to be provided
- Ongoing maintenance of information e.g. change in activities, HVAC components, etc

What does iSERV require?

- Data on floor area and activities served
- → Hours of use of areas by activities
- Data on HVAC system components, sensors and utility meters
- Connection of all of these together to understand the relationship between activities, HVAC components and utility use
- →Ongoing sub-hourly data to be provided
- Ongoing maintenance of information e.g. change in activities, HVAC components, etc

Current process

- → Download iSERV Excel data entry spreadsheet
- Populate with information on areas, activities, HVAC components, utility meters, etc
- → Send to iSERV for upload to online database
- → Send data regularly
- → Receive regular energy use reports and Energy Conservation Opportunity recommendations
- Online interface to manually run reports or make amendments

iSERV GANTT Chart

CA III Meeting highlights

→Vienna, December 2012

- ➔ Presented the case for MS legislators to include possibility of iSERV-type approaches in revision of their National legislation to meet recast EPBD
- ➔An overview paper of the legislative advantages of iSERV was presented to CA III, which was well received.

➔ First example report formats being produced in April 2012

- Reports will evolve over time to meet findings from data collected and to meet end user needs.
- The main items missing at present are benchmarks and Energy Conservation Opportunity (ECO) reports.

Example outputs from iSERV data – monthly data

McKenzie House Condit	ioned Floor Area	/m2 =	8434.93			
	,					
All Figures in kWh/m2						
	Electricity -	Root	LAN	Boiler		
	Unallocated		Plant	Room AC	Room	
Month	consumption	Chillers	Power	Power	Power	
Mar-11	3.62	0.18	1.54	0.21	0.6	
Apr-11	3.10	0.38	1.17	0.21	0.2	
May-11	3.49	0.18	0.93	0.21	0.1	
Jun-11	3.39	0.39	1.09	0.18	0.1	
Jul-11	3.29	1.24	1.33	0.17	0.1	
Aug-11	3.36	0.98	1.32	0.17	0.1	
Sep-11	3.25	0.50	1.12	0.16	0.1	
Oct-11	3.33	0.15	1.13	0.17	0.2	
Nov-11	3.36	0.11	1.37	0.16	0.4	
Dec-11	3.17	0.06	1.30	0.17	0.5	
Jan-12	3.34	0.05	1.45	0.16	0.5	
Feb-12	3.37	0.07	2.16	0.16	0.9	
T-1-1 84-1 44 1 - T-1 40	40.4		45.0	24		

Sum of

McKenzie House Electricity Breakdown by Month

	-																		
Consumption	L Total Ma	r-11 to Feb-1	.2	40.1	4.3	15.9	2.1	4.1	13.3	0.8	45.0	125.7	257.0						
						Clean		DB Floors			Lan Room	Landlords				MCP 4th	MCP Boiler	MCP	1
	Bir 1	Bir 2	Bir 3	Chiller 1	Chiller 2	Supply DB	DB Floor 2	1&3 cum	DB Ground	Fire Panel	AC cum	DB cum	Lift 1 cum	Lifts 2&3	Main	Plant cum	Plant cum	Central	MCP Dining
Month	Cumulative	Cumulative	Cumulative	cum power	cum power	cum power	cum power	power	cum power	cum power	power	power	power	cum power	Incomer CP	power	power	services	cum power
Mar-11	5,956.81	316,373.75	9,614.31	986	561	37	-	10,993	-	1	l 1,792	-	206	253	99,253	207	5,623	567	622
Apr-11	2,919.58	18,340.97	3,903.47	1,846	1,374	47	-	9,154	-	1	L 1,734	-	1	412	81,365	177	1,772	534	628
May-11	791.39	3,443.61	1,058.75	1,042	464	49	-	9,661	-	1	l 1,792	-	24	490	82,732	188	1,062	561	859
Jun-11	-	-	-	1,868	1,382	12	-	9,904	-	1	L 1,543	-	249	416	85,947	176	907	574	559
Jul-11	-	-		5,326	5,092	22	-	9,299		2	2 1,400		276	388	92,747	185	930	537	488
Aug-11	-	-	-	4,555	3,730	1	-	9,455		-	1,401	-	259	371	91,448	182	961	560	548
Sep-11	224.58	224.58	-	2,561	1,651	13	-	9,341	-	2	1,356	- 1	270	382	84,318	177	935	542	529
Oct-11	2,481.11	246,988.19	3,443.61	806	498	17	-	9,422		1	L 1,403		272	378	83,722	185	2,079	536	514
Nov-11	4,320.56	73,631.25	6,523.61	561	354	10	-	10,019	-	1	L 1,358	-	282	403	88,882	179	4,018	541	523
Dec-11	242,218.47	294,749.58	12,533.89	288	189	110	-	7,816		2	2 1,402	-	217	305	80,854	198	4,373	522	556
Jan-12	71,075.28	266,901.25	10.69	261	190	145	-	8,854		1	L 1,359		252	364	87,521	215	4,628	498	515
Feb-12	277,756.11	76,197.92	225,684.86	316	234	109	-	10,176	-	2	2 1,362	-	277	407	101,491	248	7,620	510	534
Mar-12	19,378.33	20,982.50	19,378.33	93	58	46	-	3,337	-	-	454		89	133	30,778	63	2,577	165	175
Grand Total	627,122.22	1,317,833.61	282,151.53	20,509	15,777	618	-	117,431	-	15	5 18,356	-	2,674	4,702	1,091,058	2,380	37,485	6,647	7,050

Example outputs from iSERV data – subhourly data

Example for Chiller 1 for July 2011 showing good control both inside and out of occupancy hours

Basic monthly online report

Monthly report with benchmarks

iSERV potential reports

- ➔ The image to the right shows a mock-up of the type of report possible from iSERV:
 - Benchmark ranges as background to actual
 - Performance of components against bespoke benchmarks for given activity mix
 - Tabular information

Component	Total kWh per m2 per annum	Average W per m2	%FLE	Performance
Packaged chiller 1	200	22.83	46.0%	Good
Packaged chiller 2	250	28.54	57.0%	Good
Boiler Room Supply Fans	4	0.46	23.0%	Good
Hot Water Primary Circulators	6	0.68	34.0%	Good
VAV AHU 1	150	17.12	57.0%	Good
VAV AHU 2	200	22.83	76.0%	Average
Chiller 1 - Heat Rejection Fans	90	10.27	86.0%	Needs Inspection
Chiller 2 - Heat Rejection Fans	85	9.7	81.0%	Needs Inspection

Energy use by component

→ iSERV will also calculate/estimate the consumption of individual HVAC components PER UNIT AREA SERVED and PER ACTIVITY where their supply meter is recorded.

Summary

 \rightarrow The project overall is progressing well.

- →The critical part of the project is the next 6 months. In this time we must recruit and start getting data from a substantial number of HVAC systems to enable all the project elements to be achieved.
- →iSERV is actively looking for new stakeholders to participate in this exciting project which has the interest and attention of the EU MS legislators.

Enabling the approach

- ➔ For this workshop we'd like to hear what you find clear and unclear, what you like and what you don't like, and what you think needs to be done to convince the stakeholders in this area to actually want to use such an approach
- ➔ If the iSERV approach does not work then by 2019 we will have HVAC standards imposed which may have no link to what is practically possible.
- →iSERV is the only large scale approach which can provide real-world benchmarks in time for 2019

Workshop topics

Topic 1: Acceptable levels of data requirements to enable participation

- Topic 2: Barriers to participation other than data requirements
- → Topic 3: Data collection systems

Topic 4: Stakeholder information required to drive systematic improvements in HVAC system energy efficiency

Inspection of HVAC systems through continuous monitoring and benchmarking

www.iservcmb.info

Thank you for your attention

Dr lan Knight iSERV Coordinator knight@cf.ac.uk www.iservcmb.info www.iservcmb.eu

The sole responsibility for the content of this presentation lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained here.